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T here is clearly a need for new or improved thera-
pies for cancers such as hepatocellular carcino-
mas (HCCs) and melanomas that are refractile to

currently used chemotherapy. Fortunately, some malig-
nancies have underlying metabolic deficiencies that
provide a unique chemotherapeutic opportunity. Many
hepatocellular, prostate, or renal carcinomas as well as
metastatic melanomas have an impaired urea cycle and
thus are auxotrophic for the nonessential amino acid
L-arginine (L-Arg), experiencing cell cycle arrest and ap-
optosis in its absence. Clinical trials with the L-Arg de-
grading enzyme arginine deiminase (ADI) from Myco-
plasma arginii have been quite effective. Unfortunately,
the bacterial origin of ADI results in adverse immune re-
sponse after repeated administration, a major liability
for extended treatment (1). L-Arg depletion therapy with
the human, Mn2-dependent enzyme Arginase I (hArgI)
has also shown promise for cancer treatment but has
drawbacks that limit its usefulness as a drug candidate.

In contrast to constructing an optimized therapeutic
enzyme by the numerous clever protein engineering
techniques involving molecular biology used by this
lab and others (2−6), we found that thinking about ba-
sic chemical principles was invaluable in identifying a
derivative of hArgI with increased therapeutic potential.
The enzyme hArgI contains a dinuclear Mn2� cofactor in
its active site, which is thought to produce a metal-
bound hydroxide from water in preparation for attack
on the guanidinium carbon of L-Arg. Subsequent hy-
drolysis gives urea and L-ornithine (L-Orn) The Mn-hArgI-
catalyzed formation of a hydroxide molecule is strongly
pH-dependent, resulting in an enzyme with an alkaline
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ABSTRACT Replacing the two Mn2� ions normally present in human Arginase I
with Co2� resulted in a significantly lowered KM value without a concomitant reduc-
tion in kcat. In addition, the pH dependence of the reaction was shifted from a pKa

of 8.5 to a pKa of 7.5. The combination of these effects led to a 10-fold increase in
overall catalytic activity (kcat/KM) at pH 7.4, close to the pH of human serum. Just
as important for therapeutic applications, Co2� substitution lead to significantly in-
creased serum stability of the enzyme. Our data can be explained by direct coordi-
nation of L-Arg to one of the Co2� ions during reaction, consistent with previously
reported model studies. In vitro cytotoxicity experiments verified that the Co2�-
substituted human Arg I displays an approximately 12- to 15-fold lower IC50 value
for the killing of human hepatocellular carcinoma and melanoma cell lines and thus
constitutes a promising new candidate for the treatment of L-Arg auxotrophic
tumors.
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pH optimum (�9.5) (7) and only fractional activity at
physiological pH (�7.4). We reasoned that reducing the
pKa of the metal-activated water in hArgI should en-
hance activity at physiological pH values and result in
a more effective therapeutic.

Several lines of evidence suggested that Co2� would
be a good choice to increase hArgI activity at physiologi-
cal pH. First, the pKa of the Co2� hexaquo-cation (8.9–
9.7) (8, 9) is known to be about 1 pH unit lower than that
of the Mn2� hexaquo-cation (10.4–10.6) (8–10). Sec-
ond, bovine carboxypeptidase A with Mn2� as a cofac-
tor has an acidic limb kinetic pKa of 6.4, which Co2� sub-
stitution drops to 5.3 (11). Similarly the metallo-�-
lactamase from B. cereus has a pKa of 8.4 with Mn2�

that is depressed to a pKa of 6.9 with Co2� as the cofac-
tor (12). Third, an arginase from H. pylori has been re-
ported that employs Co2� as the catalytic metal and dis-
plays a relatively acidic pH optimum (13). Finally, He
and Lippard have prepared a series of inorganic argin-
ase model compounds and have shown that complexes
of Co2�, but not Mn2�, Zn2�, or Ni2�, could catalyze the
hydrolysis of aminoguanindinium (14). Interestingly, en-
hanced coordination of the substrate’s amino group to
the Co2� ion, as opposed to a simple shift in pKa of
bound water, was presumed to be a major influence
on catalytic activity in this case.

Herein we report the construction, biophysical charac-
terization, and chemical effects of Co2�-substituted
hArgI (Co-hArgI). Co-hArgI exhibited the expected de-
crease in pKa of bound water but also a substantial de-
crease in KM of the L-Arg substrate and in the Ki for the re-
action product L-Orn, as well as an increase in serum
stability. The combination of these effects led to an in-
creased cytotoxicity toward hepatocellular carcinoma
and melanoma cell lines.

RESULTS AND DISCUSSION
Expression and Purification of hArgI. The hArgI gene,

codon-optimized for expression in E. coli, was con-
structed using overlapping oligonucleotide assembly.
The final construct was fused to an N-terminal His6 puri-
fication tag with a Tobacco Etch Virus (TEV) cleavage
site and was expressed from a T7 promoter. High level
expression was achieved in E. coli BL21 cells and follow-
ing IMAC purification yielded �200 mg hArgI L�1 shake
flask culture (95% pure by SDS�PAGE; Supplementary
Figure S1).

Effect of Co2� on hArgI Catalytic Activity at
Physiological pH. As a preliminary check of acticvity
using Co2� relative to Mn2�, E. coli cells expressing hArgI
were grown in minimal media, and 100 �M MnSO4 or
CoCl2 was added upon induction of protein synthesis.
Addition of the metal inhibited cell growth but did not
prevent protein synthesis. The rate of hydrolysis of vary-
ing concentrations of L-Arg by clarified cell lysates at
pH 7.4 was determined and used to obtain apparent
KM values of 1.5 and 0.16 mM for Mn2� and Co2�, re-
spectively. Repeating the experiment in the presence of
NiSO4 or ZnCl2 led to apparent KM values of 1.8 and
2.0 mM, respectively.

For detailed biochemical analyses, purified hArgI, ex-
pressed in the absence of added metal, was incubated
at 50 °C for 20 min in the presence of either MnSO4 or
CoCl2. Following extensive dialysis, the metal content of
the protein was analyzed by inductively coupled plasma
mass spectroscopy (ICP-MS). Samples of hArgI incu-
bated with CoCl2 contained 2.1 � 0.5 equiv Co2�,
0.4 � 0.1 equiv Fe2�, and no Mn2� nor Zn2�, while
samples incubated with MnSO4 contained 1.5 � 0.2
equiv Mn2� and 0.4 � 0.1 equiv Fe2�. As expected, nei-
ther Co2� nor Zn2� were detected in the latter enzyme.

Steady state kinetic analysis in 100 mM Hepes buffer,
pH 7.4, at 37 °C revealed that recombinant Mn-hArgI dis-
plays kcat � 300 � 12 s�1, KM � 2.3 � 0.3 mM, and
kcat/KM � 129 � 20 mM�1 s�1 for the hydrolysis of L-Arg.
Co-hArgI displayed a 12-fold lower KM equal to 0.19 �

0.04 mM but a comparable kcat (240 � 14 s�1), result-
ing in a 10-fold higher kcat/KM of 1,260 � 330 mM�1 s�1

at physiological pH (Figure 1).
We measured the effect of two competitive inhibi-

tors, product L-Orn and L-Leu, at pH 7.4 and pH 8.5
(Table 1). At pH 7.4 and pH 8.5 the reaction product
L-Orn was found to inhibit Mn-hArgI with KI � 2.4 � 0.1
and 0.53 � 0.06 mM respectively, in a comparable
range to the value reported for rat Arginase I at pH 9.0
(Ki � 1 mM) (15). Under the same conditions, Co-hArgI
exhibited Ki � 0.076 � 0.016 mM at pH 7.4 and Ki �

0.064 � 0.009 at pH 8.5. The inhibition constants for
the competitive inhibitor L-Leu were also calculated and
found to be of similar magnitude to each other with a
Ki of 0.48 � 0.05 mM for Co-hArgI and a Ki of 0.39 �

0.04 mM for Mn-hArgI at pH 7.4. At pH 8.5 L-Leu bound
Mn-hArgI with Ki � 0.64 � 0.04 mM and Co-hArgI with
Ki � 1.3 � 0.15 mM, similar to the Ki of 1 � 0.1 reported
for hArgII (16).
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pH Dependence of Co-hArgI and Mn-hArgI. L-Arg hy-
drolysis rates by Mn-hArgI are strongly pH-dependent
with a log kcat slope of 0.5 from pH 6 to pH 8.5. This data
can be fit to a one-pKa model, eq 3, with an apparent
pKa of 8.1 � 0.05 in good agreement with previously re-
ported values for hArgII (16). In contrast, Co-hArgI rates
show a greatly shifted pH dependence with a tentative
pKa of 5.2 � 0.1 (there is not much data defining this
part of the curve, and thus it is more of an estimate). For
the most part the Co-hArgI rate of hydrolysis is mostly
pH-independent from pH 6 to 10.5 (log slope �0.03)
(Figure 2, panel A). Fits to log plots of 1/KM versus pH
show a bell-shaped curve for Mn-hArgI with pKa values
of 7.1 � 0.1and 10.7 � 0.3, while Co-hArgI has appar-
ent pKa values of 7.2 � 0.1 and 9.7 � 0.1 (Figure 2,
panel B). A fit of log kcat/KM versus pH data to a two-pKa

Henderson–Hasselbach model (17) resulted in a bell-
shaped curve with Co-hArgI having an ascending limb
pKa of 7.4 � 0.1 and a descending limb pKa of
10.0 � 0.1. The data for Mn-hArgI could also fit a bell-
shaped curve with an ascending limb pKa of 8.4 � 0.1
and a descending limb with an apparent pKa value of
11.0 � 0.1 (Figure 2, panel C). Because the fitted val-
ues are less than 3.5 pH units from each other, we ap-
plied Segel’s method (18) to calculate corrected pKa val-
ues of 7.5 and 9.9 for Co-hArgI and values of 8.5 and
10.9 for Mn-hArgI. (It should be noted that there is not
much data defining the descending limb pKa of Mn-
hArgI and thus it is more of an estimate).

X-ray Absorption Spectroscopy. To examine the
metal site structure in more detail, X-ray absorption
spectra were obtained for Co-hArgI. From the crystal
structures of native di-Mn2� enzymes, a six-coordinate
metal ion and a five-coordinate metal ion, coordinated
by one N from histidine and four or five O donors per
metal ion, is anticipated. The EXAFS curve fitting results
(see Supplementary Table S1 and Figure S2) indicate
that the di-Co2� active site is less than six-coordinate,
with an average of 5 donors (1 His N and 4 O), similar
to what was observed in EXAFS study of the rat ArgI di-
Mn2� enzyme (19). The apparent heterogeneity of the
first shell is due, in large part, to interference from Co2�-
Co2� scattering. While the first coordination sphere ap-
pears largely unchanged with respect to the native Mn2�

enzyme, some rearrangement is indicated, as the met-
al–metal separation is �0.2 Å longer in the di-Co2� en-
zyme (3.5 � 0.03 vs 3.3 Å), which may have an effect on
catalysis.

Enzyme Stability. The midpoint temperature (TM) for
unfolding was determined by monitoring the change in
the ellipticity at 222 nm (�222) as a function of T. A fit to
the data for Co-hArgI was found to yield a TM � 74 °C

Figure 1. Comparison of steady-state kinetics of hArgI sub-
stituted with Mn or Co in a 100 mM Hepes buffer, pH 7.4,
37 °C. Co-hArgI (�) had a kcat of 240 � 14 s�1, a KM of 190
� 40 �M, and kcat/KM of 1,270 � 330 mM�1 s�1, as com-
pared to Mn-ArgI (Œ) where we found a kcat of 300 �
12 s�1, a KM of 2,330 � 260 �M, and kcat/KM of 129 �
20 mM�1 s�1.

TABLE 1. Comparison of Mn-hArgI and Co-hArgI inhibition constants at pH 7.4 and pH 8.5

Ki L-Leu, �M Ki L-Orn, �M KM L-Arg, �M % OH-bound

Mn-hArgI (pH 7.4) 390 � 40 2,400 � 100 2,300 � 330 8
Mn-hArgI (pH 8.5) 640 � 40 530 � 60 1,600 � 140 50
Fold change (1.6) (4.5) (1.4) (6.3)
Co-hArgI (pH 7.4) 480 � 50 76 � 16 190 � 40 44
Co-hArgI (pH 8.5) 1,300 � 150 50 � 7 140 � 10 91
Fold change (2.7) (1.5) (1.4) (2.1)
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(Figure 3), essentially identical to the TM of 75 °C re-
ported earlier for rat Mn-ArgI (20). The stability of the en-
zyme in serum was also evaluated by incubating 1 �M
purified enzyme in pooled human serum at 37 °C, while
monitoring the rate of hydrolysis of L-Arg as a function
of time. Mn-hArgI was found to display an exponential
loss of activity with a t1/2 � 4.8 � 0.8 h. In contrast Co-

hArgI exhibited far greater overall serum stability with a
biphasic loss of activity made up of an apparent first
t1/2
1 � 6.1 � 0.6 h and a much slower second phase with

a t1/2
2 of 37 � 3 h (Figure 3 inset). Dissociation of one

of the two metal equivalents in Arginase results in a re-
duction but not a complete loss in activity (21) and may
explain the biphasic kinetics of the Co-hArgI enzyme,
with one metal rapidly lost and the second metal being
lost much more slowly, corresponding to their respective
KD values. This may be species-specific, as mutagen-
esis of rat ArgI metal binding residues typically leads to
orders of magnitude loss in activity (22). However, sup-
port for this hypothesis was provided by the kinetics of
deactivation of Co-hArgI in 100 mM HEPES, pH 7.4, at
37 °C in the presence or absence of 500 �M Co2�. In the
presence of extra Co2�, monophasic sigmoidal loss of
activity was observed with a t1/2 � 45 � 2 h.

Cytoxicity toward Human Cancer Cell Lines. The
in vitro cytotoxicity of Mn-hArgI and Co-hArgI toward
the hepatocellular carcinoma cell line Hep3b and the
melanoma cell line A375 was evaluated. The Mn-hArgI
displayed an IC50 of 5.0 � 0.7 nM toward the Hep3b cell
line, in excellent agreement with earlier reports (23).
Consistent with its markedly improved catalytic proper-
ties, Co-hArgI showed a 15-fold lower IC50 equal to
0.33 � 0.02 nM (0.012 �g mL�1) (Figure 4). The in vitro
cytotoxicity of Mn-hArgI and Co-hArgI against mela-
noma cell line A375 gave similar results to the HCC ex-
periment. Against the A375 melanoma cells, Mn-hArgI

Figure 2. Log plots of the pH dependence of Michaelis–Menten parameters for Co-hArgI (�) and Mn-ArgI (Œ) hydrolysis of L-Arg. A) kcat of
Mn-hArgI (Œ) is dependent on pH (Log slope � 0.5 between pH 6 and 8.5). kcat of Co-hArgI (�) has a pH dependence between 5 and 6
(Log slope � 0.43) but only varies slightly with pH between pH 6 and 10.5 (Log slope � 0.03). B) pH dependence of 1/KM for Co-hArgI
(�) is bell-shaped and has apparent pKa values of 7.3 and 9.7. pH dependence of 1/KM for Mn-hArgI (Œ) is also bell-shaped and has ap-
parent pKa values of 7.1 and 10.7. C) pH dependence of kcat/KM shows an ascending limb pKa value of 8.5 for Mn-hArgI (Œ), which drops a
pH unit to 7.5 for Co-hArgI (�).

Figure 3. Thermal denaturation of Co-hArgI. A TM of 74 °C was deter-
mined, in excellent agreement with previously recorded values for
rat Mn-ArgI (20).
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displayed an IC50 of 4.1 � 0.1 nM, whereas Co-hArgI
showed a �13-fold increase in cytotoxicity with an IC50

value of 0.32 � 0.06 nM.
Discussion. Recombinant hArgI was successfully de-

rivatized with Co2� as confirmed by ICP-MS analysis,
which indicated 2.1 � 0.5 equiv Co2� per enzyme.
EXAFS also revealed the coordination of two Co2� ions
that have an environment similar but not identical to
that of the native Mn2� ions in the native enzyme. The
EXAFS data obtained with Co-hArg1 indicated a Co2�–
Co2� separation of 3.5 � 0.03 Å, which is 0.2 Å longer
than the Mn2�–Mn2� separation in Mn-hArgI. It is not
clear at this time how these differences might influence
the catalytic hydrolysis reaction mechanism, but it is evi-
dent that Co2� substitution does not drastically alter
the active site of hArgI.

Detailed kinetic analyses revealed that consistent
with the original experimental design, Co-hArgI exhib-
ited a pH rate profile for the hydrolysis of L-Arg that ap-
pears to represent about a 1 pH unit drop in the pKa of
a bound nucleopilic water. In general, the pH depen-
dence of kcat/KM is indicative of ionizations in the free en-
zyme and the free substrate (E � S). For Mn-hArgI, the

calculated ascending limb pKa of 8.5 most likely re-
flects the nucleophilic water/hydroxide equilibrium, al-
though this curve is not well-defined at high pH values.
In contrast, Co-hArgI has a well-defined bell-shaped
curve of the pH dependence of kcat/KM with an appar-
ent pKa of 7.5, 1 pH unit lower than Mn-hArgI. While Co2�

substitution was expected to depress the pKa of bound
water (8–10), the full effect may be masked by a change
in the rate-limiting step. The pH dependence of kcat for
Co-hArgI, which reflects ionizations in the enzyme–
substrate complex (ES), shows that except at acidic pH
values (5–6), the kcat of Co-hArgI has almost no global
pH dependence (log slope � 0.03), while the Mn-hArgI
rate increases more than 30-fold (log slope � 0.5) over
the same range, indicating that a rate-limiting step has
changed.

In light of the kinetic data, it is reasonable to pro-
pose that product release has become rate-limiting for
Co-hArgI. Consistent with this notion, the inhibition con-
stant (Ki) measured for the reaction product L-Orn with
Co-hArg1 was 0.076 mM, about 30-fold lower than the
Ki value observed for L-Orn with Mn-hArg1 (Ki of 2.4 mM)
at pH 7.4. At pH 8.5 Mn-hArgI binds L-Orn about 5-fold
more tightly (Ki � 0.53 mM) than at pH 7.4, which corre-
lates to a �6-fold change in the amount of Mn-hArgI
bound hydroxide and suggests that electrostatic effects
play a role in ligand binding. Similarly the 2-fold increase
in bound hydroxide from pH 7.4 to 8.5 with Co-hArgI is
accompanied by a �2-fold increase in L-Orn affinity.
However, Co-hArgI binds L-Orn an order of magnitude
more tightly at pH 8.5 than the Mn2� substituted en-
zyme. L-Orn has a terminal amino group, and Co2� ions
have a significantly higher affinity for nitrogen-
containing ligands compared to Mn2�. Therefore, the
drastic change observed upon Co2� substitution can be
interpreted to suggest that the metal center of Co-hArgI
interacts directly with L-Orn, and this interaction is re-
sponsible for a change to rate-limiting product release.
Note that L-Leu, which cannot interact with the metal
center, was found to bind both Co-hArgI and Mn-hArgI
approximately equally at pH 7.4 and within 2-fold of
each other at pH 8.5.

At pH 7.4 and 37 °C, both Mn-hArgI and Co-hArgI dis-
played similar kcat values of 300 and 240 s�1, respec-
tively. However, a large change was observed in KM val-
ues. Co-hArgI displayed a KM of 0.19 � 0.04 mM, about
12-fold lower than the KM � 2.3 � 0.3 mM seen for Mn-
hArgI. The net result is that at pH 7.4, Co-hArgI has a

Figure 4. Representative graph of the effect hArgI on the
growth Hep3b cancer cells (day 5). Mn-hArgI (Œ) resulted
in an apparent IC50 of 5 � 0.3 nM (�0.18 �g mL�1). Incu-
bations with Co-hArgI (�) led to a 15-fold increase in
cytotoxicity with an apparent IC50 of 0.33 � 0.02 nM
(� 0.012 �g mL�1). Inset: stability of Co-hArgI or Mn-hArgI
(1 �M) incubated in pooled human serum at 37 °C. Mn-
hArgI (Œ) displayed an exponential loss of activity with a
t1/2 of 4.8 � 0.8 h. In contrast Co-hArgI (�) displayed a bi-
phasic loss of activity with an apparent first t1/2 of 6.1 �
0.6 h followed by much longer second t1/2 of 37 � 3 h.
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catalytic efficiency, kcat/KM, that is about 10-fold higher
than that of Mn-hArgI. It is tempting to propose that the
lower KM value seen for Co-hArgI is the result of direct in-
teractions between a Co2� ion and one of the nitrogen
atoms of the arginine substrate in analogy to the pro-
posed interaction that occurs with the L-Orn product.

A possible mechanism is shown in Scheme 1. L-Arg is
proposed to bind in the active site through direct coordi-
nation to a Co2� ion. In this scenario, the L-Arg is hypoth-
esized to be deprotonated by virtue of a shift in the gua-
nidinium pKa in the vicinity of the strong electrostatic
fields of the active site metal ions. Binding of L-Arg as
the tautomer shown would facilitate nucleophilic attack
by coordinated hydroxide, which in concert with an
acidic group to donate a proton would lead to a tetrahe-
dral intermediate that ultimately collapses to form urea
and metal-bound L-Orn. Departure of L-Orn and loss of a
proton from bound water might regenerate the resting
enzyme with a coordinated hydroxide. An important fea-
ture of the proposed mechanism is that a substrate N
atom coordinates to the metal ion directly, offering a
possible explanation for why the presence of Co2�,
which is known to have a higher affinity for nitrogen li-

gands compared to Mn2�, exhibits a dramatically lower
KM value.

Kostic and co-workers first demonstrated that Pt2�

terpyridine complexes could coordinate neutral guani-
dines through an imine nitrogen (24), something that
was thought to be related to the strong acidity of Pt2�.
However, in a more biologically relevant example,
the elegant work of Kimura et al. showed that in a 1:1
Zn2�(2-guanidinyl)ethyl-cyclen) complex, the guanidine
is a good ligand to Zn2� at neutral pH in an aqueous so-
lution. They calculated that the deprotonation of guani-
dinium in this complex has an apparent pKa of 5.9 (25).
A crystal structure of an arginase from Bacillus caldovex
with one of the Mn2� ions removed shows substrate
L-Arg coordinated to the remaining metal by a terminal
amino nitrogen (PDB: 3CEV) (26). However, the
guanidine-metal bond is longer and more distorted
than those normally found in small molecule complexes
and has not been thought to contribute greatly to sub-
strate binding (27). This may indeed be the case for the
Mn2� enzyme: Khangulov et al. proposed a Mn2� coor-
dinated terminal guanidine nitrogen for rat ArgI on the
basis of EPR studies of the competitive inhibitors L-Lys
and L-Orn. Their data indicated that L-Orn did not inter-
act with the Mn metal center but the one methylene
longer L-Lys could (28). However, the Ki values for L-Lys
and L-Orn vary only slightly (0.9 and 1 mM, respectively)
(15), indicating that coordination of a N ligand to Mn2�

does not greatly contribute to binding. Cobalt, however,
has a much greater affinity for nitrogenous ligands and
as the dramatically lower KM (L-Arg) and Ki (L-Orn) values
attest, is likely coordinating substrate and product li-
gands when substituted into the hArgI active site. Com-
paring the pH dependence of Mn-hArgI and Co-hArgI
upon kcat, which reflects ionizations in the enzyme–sub-
strate (ES) complex, suggests that L-Arg ionization may
be greatly facilitated by Co2� substitution.

From a therapeutic standpoint, the lowered KM value
and the resulting increase in catalytic efficiency are very
important for the overall effectiveness of Co-hArgI rela-
tive to Mn-hArgI in cancer cytotoxicity assays. Moreover,
Co-hArgI also displayed a significantly enhanced life-
time in human serum compared to Mn-hArgI. Although
the origins of this effect are not certain, the fact that both
derivatives were found to have similar thermal stabili-
ties may indicate that the reason for the difference in se-
rum stability lies in the properties of the metal ions
themselves. Perhaps Co-hArgI is able to retain one or

SCHEME 1. Proposed Mechanism Showing
Co-hArgI Coordinating a Hydroxide
Moleculea

aUpon substrate binding L-Arg is deprotonated by Co2� and
coordinated via an imino guanidine nitrogen. The coordinated
hydroxide can then attack the guanidinium carbon and pick up
a proton from a general acid. This transient tetrahedral interme-
diate would then collapse into product urea and L-Orn. Water
could then displace L-Orn and be ionized to hydroxide, regener-
ating the resting enzyme.
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both of its metal ions longer than Mn-hArgI, an idea sup-
ported by retention of catalytic activity observed in the
presence of excess Co2� ion.

Conclusion. Consistent with the measured kcat/KM val-
ues, we found that Co-hArgI exhibits dramatically im-
proved cytotoxicity against human melanoma and hepa-
tocellular carcinoma cell lines relative to that of Mn-
hArgI. Engineered biological therapeutics have great
potential as antineoplastic agents. As opposed to thera-
peutic antibodies that have stoichiometric interactions,
an enzyme therapeutic works as a catalyst and requires
far lower dosing. There are a number of enzyme-based

cancer chemotherapies either past or under current
clinical evaluation, including L-asparaginase (Elspar),
ribonuclease (Ranpirnase), methionine-	-lyase, argin-
ine deiminase (Hepacid), and others (29–31). In fact,
Co-hArgI displayed an IC50 on par with that of the bacte-
rial ADI, which is currently undergoing advanced clini-
cal evaluation. The use of human arginase I variants that
display better pharmacological properties represents a
major step forward in terms of the ability to treat urea
cycle deficient tumors. Co-hArgI is currently undergoing
extensive preclinical evaluation in a mouse xenograft
model of hepatocellular cancer.

METHODS
Construction of Synthetic Genes. Overlapping oligonucleo-

tides (IDT) comprising the coding sequence of a 6 
 histidine
tag, a Tobacco Etch Virus (TEV) protease recognition site, and
human arginase I were combined with dNTPs, buffer, and DNA
polymerase (Finnzymes) and allowed to react for 30 cycles of
98 °C for 10 s, 70 °C for 20 s, and 72 °C for 1 min. A 1 �L ali-
quot of this mixture was then used as a template along with
specific end primers (forward 5=-GATATACCATGGGTTCTTCTCACC-
ATCATCACCACCACAGCTCTGGCG and reverse 5=- CGAATTCGGAT-
CCTCACTTCGGTGGATTCAGATAATCAATT) in another PCR reaction
to amplify the full length gene. The cleaned product (Qiagen)
was digested with NcoI and BamHI, ligated into a pET28a vec-
tor (Novagen) and transformed into E. coli (DH5�).

Expression and Purification of Arginase. E. coli BL21 cells har-
boring plasmids containing human arginase were grown in TB
media containing 50 �g mL�1 kanamycin at 37 °C to an OD600

of �0.5 at which time IPTG was added to a concentration of
0.5 mM. After an additional �12 h of incubation at 25 °C, cells
were collected by centrifugation, resuspended in IMAC buffer
(10 mM NaPO4/10 mM imidazole/300 mM NaCl, pH 8), and ly-
sed by a French pressure cell. The lysates were centrifuged at
14,000g for 20 min at 4 °C. The resulting supernatant was ap-
plied to a cobalt or nickel IMAC column and washed with 10–20
column volumes of IMAC buffer, and then proteins were eluted
with IMAC elution buffer (50 mM NaPO4/250 mM imidazole/
300 mM NaCl, pH 8). Fractions containing enzyme were then in-
cubated with 10 mM metal (CoCl2 or MnSO4) for 15 min at 50–
55 °C, followed by filtration through a 0.45 �m syringe filter.
Using a 10,000 MWCO centrifugal filter device (Amicon), pro-
teins were then buffer exchanged several times into a solution
composed of 100 mM HEPES and 10% glycerol, pH 7.4. Aliquots
of purified arginase enzyme were then flash frozen in liquid ni-
trogen and stored at �80 °C.

Divalent Metal Screening. E. coli cells expressing arginase
were grown at 37 °C in minimal media to an OD600 of 0.8�1.
Cells were collected by centrifugation and resuspended in fresh
minimal media containing 0.5 mM IPTG and 100 �M of the diva-
lent metal-salt of choice (e.g., CoCl2, MnSO4, NiCl, ZnCl2), and in-
cubation was continued for an additional 8–12 h at 25 °C with
shaking. Cells were collected by centrifugation and lysed by
French pressure cell or by using the B-PER reagent (Pierce).
Cleared supernatant was used in activity assays to determine
KM values for L-Arg hydrolysis.

Metal Identity and Stoichiometry. In order to determine metal
identity content and identity, Mn-hArgI (145 �M), Co-hArgI
(182 �M), and associated dialysis buffers were analyzed by in-
ductively coupled plasma mass spectrometry (ICP-MS, Depart-
ment of Geological Sciences, University of Texas at Austin). The
concentration of metal found in the dialysis buffer was sub-
tracted from the value obtained in the protein sample, and the
data were normalized by dividing by the protein concentration.
To determine protein concentrations, an extinction coefficient,
�280 � 24,180 M�1cm�1 was calculated for hArgI based on
amino acid sequence (32). All protein concentrations were de-
termined from the A280 in 6 M guanidinium hydrochloride,
20 mM phosphate buffer, pH 6.5. For comparison we also calcu-
lated arginase concentration by the BCA assay (Pierce) using di-
lutions of BSA as a standard and found a similar value.

Kinetic Assays. We used the diacetylmonoxine (DAMO) der-
vitization of urea in the presence of strong acids, thiosemicarba-
zide, and Fe3� with heating to produce a chromophore with a
max of �530 nm. The dye structure is not definitively known, but
the reaction is hypothesized to be a condensation of DAMO
and urea/uriedo that is possibly stabilized by Fe3� ions (33).
The assay was shown to be linear between 0 and 300 �M urea
with a lower detection limit of 1 �M. Typically reactions were per-
formed by equilibrating 1.5 mL Eppendorf tubes containing
200 �L of substrate at 37 °C in a heat block. Reactions were
started by adding 5 �L of enzyme solution and quenching with
15 �L of 12 N HCl after 30 s. Reactions and blanks were then
mixed with 800 �L of COLDER (34) and boiled for 15 min. After
cooling for 10 min, the samples were transferred to cuvettes,
and the A530 was determined. Because L-Arg has a background
absorbance at A530, L-Arg blanks were included for all substrate
concentrations used.

Product Inhibition of hArgI. Co-hArgI was incubated with
0.25 mM L-Arg in a 100 mM HEPES buffer, pH 7.4, at 37 °C or
with 100 mM Tris buffer, pH 8.5, at 37 °C with varying concen-
trations of L-Orn (0–1 mM). Mn-hArgI was incubated with
1.5 mM L-Arg in 100 mM Hepes buffer, pH 7.4, at 37 °C in the
presence of 0–6 mM L-Orn. Mn-hArgI was incubated with 1 mM
L-Arg in 100 mM Tris buffer, pH 8.5, at 37 °C in the presence of
0–10 mM L-Orn. Data were expressed as percent activity, plotted
versus L-Orn concentration and fit to an exponential equation
to determine IC50 values. The Ki values were calculated using eq
1, assuming a competitive mechanism (15) and using KM val-
ues determined under identical conditions.
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L-Leucine Inhibition of hArgI. Co-hArgI was incubated with
0.25 mM L-Arg in a 100 mM HEPES buffer, pH 7.4, at 37 °C
with varying concentrations of L-leucine (L-Leu) (0–10 mM). Co-
hArgI was also incubated with 1 mM L-Arg in a 100 mM Tris
buffer, pH 8.5, at 37 °C with varying concentrations of L-Leu (0–
40 mM). Mn-hArgI was incubated with 1 mM L-Arg in 100 mM
Hepes buffer, pH 7.4, or in a 100 mM Tris buffer pH 8.5 at 37 °C
with varying concentrations of L-Leu (0–10 mM). Data were ex-
pressed as percent activity, plotted versus L-Leu concentration
and fit to an exponential equation to determine IC50 values. The
Ki values were calculated using eq 1, assuming a competitive
mechanism as reported for hArgII (16) and using KM values de-
termined under identical conditions.

pH Rate Dependence of Manganese Arginase, Cobalt Arginase.
To examine the pH rate dependence of cobalt and manganese
substituted arginase, the steady-state rate constants were deter-
mined across a broad range of pH values at 37 �C. The follow-
ing buffers were used: sodium acetate (pH 5–5.5), MES (pH 6–
6.5), HEPES (pH 7–7.8), Tris (pH 8–9), and Capso (pH 9–10.5),
all at a 100 mM concentration. All enzyme reactions were per-
formed in at least triplicate at 37 °C. Mn2�- or Co2�-substituted
arginase were each assayed with a range of substrate concentra-
tions from 30 �M to 80 mM, depending on the pH. After fitting
the kinetic data to the Michaelis–Menten equation, the kcat/KM

values were calculated and plotted versus pH. The resulting bell-
shaped data was fit to a form of the Henderson–Hasselbach
eq 2 to determine an ascending and descending limb pKa (where
yobs � kcat/KM at a given pH, and ymax � kcat/KM at the pH opti-
mum). Because fits to two pKa values closer than 3.5 units tend
to underestimate ymax, Segel’s method (eqs 4 and 5) was used
to calculate corrected pKa values for each limb of the kcat/KM pro-
files (18). The pH dependence of kcat showed only one appar-
ent pKa and was fit to eq 3 where yobs is the kcat at a given pH
and ymax equals the maximum rate and where ymin was added
to allow for a nonzero plateau at low pH values.

X-ray Absorption Spectroscopy. Samples of hArgI (�1 mM, in-
cluding 20% (v/v) glycerol added as a glassing agent) were
loaded in Lucite cuvettes with 6 �m polypropylene windows
and frozen rapidly in liquid nitrogen. X-ray absorption spectra
were measured at the National Synchrotron Light Source (NSLS),
beamline X3B, with a Si(111) double crystal monochromator;
harmonic rejection was accomplished using a Ni focusing mir-
ror. Fluorescence excitation spectra for all samples were mea-
sured with a 13-element solid-state Ge detector array. Samples
were held at �15 K in a Displex cryostat during XAS measure-
ments. X-ray energies were calibrated by reference to the ab-

sorption spectrum of the appropriate metal foil, measured con-
currently with the protein spectra. All of the data shown
represent the average of 10 scans per sample. Data collection
and reduction were performed according to published proce-
dures (35) with E0 set to 7735 eV. The Fourier-filtered EXAFS
were fit to eq 5 using the nonlinear least-squares engine of
IFEFFIT that is distributed with SixPack (36). Sixpack is avail-
able free of charge from its author, Sam Webb, at http://www-
ssrl.slac.stanford.edu/�swebb/sixpack.htm. IFEFFIT is open
source software available from http://cars9.uchicago.edu/
ifeffit (37). Fits to unfiltered data gave similar results.

In eq 6, Nas is the number of scatterers within a given radius
(Ras, � �as), As(k) is the backscattering amplitude of the
absorber-scatterer (as) pair, Sc is a scale factor, �as(k) is the
phase shift experienced by the photoelectron,  is the photo-
electron mean free-path, and the sum is taken over all shells of
scattering atoms included in the fit. Theoretical amplitude and
phase functions, As(k), exp(�2Ras/), and �as(k), were calcu-
lated using FEFF v. 8.00 (38). The scale factor (Sc � 0.74) and
�E0 (�26 eV) were determined previously (35) and held fixed
throughout this analysis. Fits to the current data were obtained
for all reasonable integer or half-integer coordination numbers,
refining only Ras and �as

2 for a given shell. Multiple scattering
contributions from histidine ligands were approximated accord-
ing to published procedures, fixing the number of imidazole li-
gands per metal ion at half-integral values while varying Ras and
�as

2 for each of the four combined ms pathways (see Supple-
mentary Table S1) (35). Co�Co scattering was modeled by fit-
ting calculated amplitude and phase functions to the experimen-
tal EXAFS of Co2(salpn)2.

Circular Dichroism Spectroscopy. A 6 �M sample of Co-hArgI
in a 100 mM phosphate buffer, pH 7.4 was analyzed on a Jasco
J-815 CD spectrometer. The change in molar ellipticity at 222 nm
(�222) was monitored from 25 to 90 °C. The fraction of dena-
tured protein at each temperature was calculated by the ratio
of [�222]/[�222]d where [�222]d is the molar ellipticity of the com-
pletely unfolded protein. The resulting data was fit to a modi-
fied logistic equation to determine the thermal transition
midpoint.

Serum Stability of hArgI Variants. Purified Co-hArgI or Mn-
hArgI was added to pooled human serum (Innovative, Novi MI)
at a concentration of 1 �M and incubated at 37 °C. At various
time points, aliquots were withdrawn and tested in triplicate for
their ability to hydrolyze L-Arg (1 mM). Data were plotted as ob-
served reaction rate versus time and fit to either a single expo-
nential equation or modeled to a biphasic decay model eq 7 to
calculate t1/2 values (where y � v at a given time, ymax � v at time
0, ymid � v at end of the first loss of activity, ymin � v at the end
of the experiment, k is an exponential rate, m is a Hill slope co-
efficient, t0.5 � time 1/2, and � � time.

Cytoxicity of Arginase Variants. In order to test the in vitro cy-
toxicity of arginase, varying concentrations (0–100 nM) of Mn-
ArgI, Co-ArgI, or controls were incubated with HCC (Hep 3b) cells
(American Type Culture Collection) or melanoma cells (A375) in
96-well plates at a seeding density of 500 cells well�1, in DMEM

Ki �
IC50

�1 �
[S]
KM

�
(1)

log yobs � log� yobs

1 � 10(pKa1�pH) � 10(pH�pKa2)�
(2)

log yobs � log�ymin �
(ymax � ymin)

(1 � 10(pKa�pH))� (3)

1[H�]1/2 � 2[H�]1/2 � K1 � 4[H�]opt (4)

[H�]opt � �K1K2 (5)

�(k) � � NasAs(k)Sc

kRas
2

exp(�2k2�as
2 )

exp(�2Ras/�) sin[2kRas � �as(k)] (6)

y � (ymax � ymid) e�kt �
ymid � ymax

1 � e�m(t0.5�t)
� ymin (7)
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media supplemented with 10% fetal bovine serum. After 24 h
of incubation at 37 °C, the cells were treated with media contain-
ing arginase in triplicate at various concentrations. The treated
cells were maintained at 37 °C and 5% CO2. Cell viability was de-
termined by the MTT assay (Sigma-Aldrich) on days 1, 3, 5, and
7 by addition of 100 �L well�1 of MTT (5 mg mL�1), followed by
incubation for 4 h, with gentle agitation one to two times per
hour. Subsequently, the solution was aspirated, and 200 �L of
DMSO was added to each well. Measurements of A570 were de-
termined, and the data were normalized relative to the control
solution. The resulting data was fit to an exponential equation
to determine an apparent IC50 value.
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